

Vineyard Management and Climate Change: Measuring the environment and grapevine stress

2023-03-23

Ben-Min Chang

Agriculture & Agri-Food Canada Summerland Research & Development Centre ben-min.chang@agr.gc.ca

Extreme weather: Stronger and more frequent

- Extreme event:
 - Temperature: Hotter and Colder
 - Water: Wetter and Dryer
 - Light: Cloudy and Sunny
 - Stronger wind and air stagnation
 - Temporal and spatial changes
- Recent extremes in BC?
 - Extreme cold 2021, 2022
 - Extreme heat 2021
 - Flooding 2021
 - Drought 2022 (West side)
 - Coolest and wet early 2022
 - Warmest late 2022

Challenge: The kitten (GHG) is still growing!

Climate change and abiotic stress in the vineyard

- Abiotic stress reduces the productivity of grapevines
- Heat stress
 - Reduces photosynthesis
 - Damages berry and leaf cells
 - Affects juice quality
- Drought stress
 - Reduces photosynthesis
 - Reduces yield
 - Might lead to heat stress
- Cold stress
 - Damages tissues
- Hypoxia stress (flooding)

(Photo courtesy of Brian Chen)

Stress management

- What is the stress?
- What is the strength of the stress?
- When and where is the event?
- Are vines sensitive to the stress? (Variety, Phenology, etc.)
- How to mitigate the stress?
- Tolerance
 - Varietal selection
 - Rootstock
- Avoidance
 - Drought stress response
- Mitigate stressors

Back to work!

Measuring the environment

- We are bad at sensing the world!
 - Skin measures energy flow not temperature
 - Metal vs Styrofoam
 - Pupil regulates incoming light too well
 - Indoor vs Outdoor
 - We are away from the vines
 - 24/7 in the vineyard? No, thanks.
- Environmental variables
 - Air temperature
 - Relative humidity
 - Soil temperature and moisture
 - Wind
 - Leaf wetness
 - Rainfall
 - Solar radiation
 - Air pressure

Weather station network

- Standardized measurements
- Data quality control/assurance
- Public access
- Tool platform
 - Models: Cold hardiness, phenology, etc.
 - Spring frost warning

Measuring the stress

- Observations
- Temperature
 - Vineyard
 - Canopy
 - Berry
 - Trunk
- Water stress
 - Canopy temp
 - Pressure bomb
 - Automatic sensor (Microtensiometer)
- Growth
 - Shoot length
 - Berry diameter
 - Trellis tension

How to mitigate heat stress?

<section-header>

- Block light
- Block air flow
- Trap heat
- Not flexible
- Expensive

- How about...
 - RDI? (regulated deficit irrigation)
 - Diseases?
 - Vigor?
 - Berry splitting?

(Photos courtesy of Good Fruit Grower)

Mist-type Evaporative Cooling System (MECS)

- Measure canopy temperature (stressor) directly
- > 35°C will trigger cooling spray
- Leaf wetness sensor
 - No excessive water

Leaf wetness sensor

Misting nozzle assembly Solenoid IR thermometer Control/data logger

30.6 °C

Berries are larger in the cooled vines (2020)

- No significant difference
 - Soil moisture (32 mm consumed)
 - Vegetative and reproductive growth
 - Juice and wine compositions
- Berry sizes, seed numbers and seed weight are different at red/purple stage

	Berry size (g)	Seed number (per berry)	Seed weight (mg)	Cell layers	
Control	0.99±0.00	1.60±0.03	14.6±0.3	?	
MECS	1.03±0.01	1.85±0.03	16.7±0.3	?	

Fruiting zone temperature control (2021, 2022)

- Mitigate heat stress at berries
 - High temperature -> Low TA, High pH
- Could MECS adjust juice/wine composition?
 - Nozzle position
 - Thermometer orientation
 - Leaf wetness sensor position

Parameter	Year	MECS		Control		P-value
TSS (Brix)	2021	26.6	± 0.2	26.6	± 0.2	0.42
	2022	25.1	± 0.2	25.2	± 0.2	0.77
Titratable acidity (g/L)	2021	8.29	± 0.22	7.58	± 0.12	< 0.05
	2022	7.41	± 0.13	6.31	± 0.13	< 0.05
рН	2021	2.98	± 0.00	3.04	± 0.03	0.18
	2022	3.06	± 0.01	3.14	±0.01	< 0.05
Malic acid (g/L)	2021	3.03	± 0.18	2.86	± 0.09	0.38
	2022	1.83	± 0.02	1.31	±0.13	< 0.05
Ammonia (ppm)	2021	100	± 22	73	± 9	0.37
	2022	53	± 3	28	± 3	< 0.05
PAN (ppm)	2021	50	± 6	44	± 3	0.39
	2022	28	± 1	26	± 1	0.35
YAN (ppm)	2021	132	± 24	103	± 10	0.38
	2022	72	± 3	49	± 2	< 0.05

• TA was higher

• 2021 Cool post-veraison

• Larger berries •

• 2022 Warmer post-veraison

PAN: Primary Amino Nitrogen YAN: Yeast Assimilable Nitrogen

Take home messages

- Climate change makes extreme weather and intensifies abiotic stress
- Our sensations are not always reliable
- Monitoring environment and vine stress is critical
 - To evaluate the stress strength
 - To make mitigation decision
- Novel tools are available to assist stress management
 - New sensors
 - Automation

Acknowledgements

- Funding
 - Canadian Agricultural Partnership
 - WSDA Specialty Crop Block Grant Program
 - Washington State Grape and Wine Research Program
 - USDA Northwest Center for Small Fruits Research
- Cooperation
 - Wine Science Center WSU
 - Jain Irrigation USA
- Dr. Pat Bowen, Carl Bogdanoff, Brad Estergaard, Steve Marsh, Emmanuelle Jean

